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We have studied oscillatory flow through a 180" curved tube with the ratio of tube 
radius to radius of curvature equal to 1/7. The flow rate is constrained to vary 
sinusoidally about a non-zero mean at a specified period T, and mean flow rate Q. At 
a certain parameter range of interest Hamakiotes & Berger (1990) predict that fully 
developed flow undergoes a period-tripling bifurcation. Our measurements using laser- 
Doppler velocimetry found no bifurcation. An additional experiment was done to 
ensure that the flow was fully developed. 

1. Introduction 
Curved pipe flows have been of considerable interest owing to their application to 

blood flow in the aorta. Reviews of the subject by Berger, Talbot & Yao (1983), and 
Ito (1987), summarize recent studies of curved pipe flows and discuss their relation to 
atherosclerosis. Hamakiotes & Berger (1989, 1990) have found the further interesting 
phenomenon of period tripling in their numerical solution of the Navier-Stokes 
equation. The phenomenon of period tripling motivated the present study owing to its 
possible relation to chaotic flows. Specifically, the numerical simulation predicts that 
in fully developed oscillatory flow of period T with non-zero mean there is a point in 
the parameter space at which the T-periodic solution of the equations of motion 
undergoes a subharmonic bifurcation to a 3T-periodic solution, that is, period tripling. 

Flow is considered fully developed when the velocity field in a cross-sectional slice 
of the curve is independent of the axial distance downstream from the entrance to the 
curve (i.e. independent of the angle 8 shown in figure 1). In our study we first examined 
the development of oscillatory flow at many values of 0 to determine at what point it 
becomes fully developed. Then we examined the fully developed region for signs of 
period tripling. 

Oscillatory flow with non-zero mean is characterized by a sinusoidal flow rate of 

(1) 

where o = 2z /T is the circular frequency of oscillation and T is the period. The flow 
rate is illustrated graphically in figure 2. A complete description of the flow requires the 
dimensions of the curved pipe and three dimensionless parameters: the mean Dean 
number K,, the Womersley parameter a (also called the frequency parameter) and the 
amplitude ratio y .  The mean Dean number is defined by K, = 2Re,d. Here Re, = 
K a / v  is the Reynolds number of the mean flow with W,- being the mean axial 

Q = Qdc + Q,, cos (wt + n), 

p Present address: Department of Physics, Westmont College, Santa Barbara, CA 93108, USA. 
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FIGURE 1. Top view schematic of apparatus. 

FIGURE 2. Flow-rate amplitude for one cycle of oscillation. The flow rate in dimensionless 
form is given by Q = 1 + y cos (ot + x ) ,  with y = 0.98. 
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velocity, a the radius of the pipe, and v the kinematic viscosity. W, is related to the 
flow rate by Qdc = x a 2 K .  The curved pipe dimensions are described by 6 = a / R ,  
which is the ratio of pipe radius to radius of curvature. Since 6 = 1/7 through our 
experiment we chose to use Re, instead of K,. The Womersley parameter is defined 
by a = a(u/v)i. Finally y is defined as the ratio of AC flow rate to DC flow rate, 
y = Qac/Qdc. The window of parameter space in which Hamakiotes & Berger found 
period tripling was for Re, between 315 and 400, a = 15, and y = 0.98. 

2. Apparatus and error analysis 
Our apparatus is shown schematically in figure 1. The curved portion with radius of 

curvature of 7 cm was machined from a block of Plexiglas providing a very precise 
geometry. The inlet and outlet tubes were precision-bore glass with 1 cm inner radius. 
The interface between Plexiglas and glass was made via machined brass connectors, 
reducing surface discontinuities to approximately 0.3 % of the radius. Brass-Plexiglas 
and Plexiglas-Plexiglas fluid seals were made with rubber O-rings. 

Care was also taken to ensure that the inlet flow was as close to fully developed 
pulsed flow for straight pipes as possible. First the flow was strained by copper wool 
to reduce large-scale turbulence and it was then funnelled into a straight pipe of 40 
diameters length. This inlet condition is to be contrasted with that of Talbot & Gong 
(1983) who drew fluid from a nearly quiescent reservoir directly into the curve. 
Although their flow did not become fully developed, the inlet flow condition so affects 
the subsequent development that we were able to achieve a fully developed state. 

Temperature was measured prior to each run and maintained to within 0.1 "C by 
means of heat-exchanging copper coils submerged in a temperature-regulated bath. A 
temperature error of 0.1" results in a maximum error in Re, of 0.2%. Since our fluid 
was composed of distilled water with only 0.1 YO impurities (LDV seeding particles), we 
used an accurate viscosity us. temperature formula taken from Weast (1968, p. F36). 
The flow rate was calibrated by measuring the flow volume and time directly for 
various steady-state motor speeds in the exact configuration used for the pulsatile 
experiment. The relation between motor speed and flow rate was linear and our 
measurement error was less than 3 YO. Thus with flow rate, pipe radius, and kinematic 
viscosity we could calculate the mean Reynolds number with an estimated error of 3 YO. 

The pump was of progressing cavity type which was used to avoid any of the high- 
frequency pulsations commonly generated by the gears in a more conventional gear 
pump. Furthermore, the pump was isolated from the experimental platform by means 
of Tygon tubing to reduce vibrations. The motor was a Compumotor stepping motor, 
computer controlled to produce a sinusoidal modulation with freedom to change all 
three parameters from the computer keyboard. We checked the performance of the 
motor by attaching an encoder having 1000 divisions per revolution on the back shaft 
of the motor. The measured frequency of modulation agreed to within 0.5% of the 
computer-selected value. The amplitude of the sine wave was also measured using the 
encoder and found to agree with the expected value. 

The velocity of flow was quantitatively measured by laser-Doppler velocimetry . We 
used a 15mW He-Ne laser in backscatter mode to facilitate the orientation and 
position of the beam crossing. One of the beams was frequency shifted by either 20 kHz 
or 50 kHz to allow us to filter out the pedestal frequency over the wide range of 
velocities in each cycle. The laser, frequency shifter, photomultiplier, and focusing 
optics were mounted and aligned on a small optical bench, and then placed vertically 
over the curved tube on a sturdy supporting frame (see figure 3). The bench was 
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FIGURE 3. Side views of laser-Doppler-velocimetry configurations in backscatter mode. In both views 
the laser is mounted vertically above the curved pipe. (a) Configuration used in measuring the axial 
velocity profiles. The marks on the horizontal diameter of the curve cross-section denote other points 
at which the velocity was measured. (b) Configuration for measuring velocity perpendicular to the 
axial flow. 

attached to the frame using a machinist's wheel which gave us two degrees of freedom 
each with resolution of 1/1000th of an inch (one vertical degree of freedom and one 
horizontal degree parallel to the plane of the beams). However, when measuring the 
profiles for flow development studies, we needed to adjust the beams orthogonal to the 
plane of the wheel, and we were only able to make use of the vertical precision. Thus 
we set a template on top of the Plexiglas block by which we were able to orient the 
beams manually. The template was removed before taking the data. 

The positioning errors were calculated as follows. The centring of the template over 
the curve was accurate to 0.05 cm. The marks on the template were separated by 0.2 cm 
and the positioning resolution was approximately 0.05 cm due to the width of the 
beams. Some calculation was then required to determine the exact position of the beam 
crossing in the curve since the light was refracted at both air-Plexiglas and 
Plexiglas-water interfaces. The indices of refraction of these materials are 1.49 and 1.33 
respectively with an error of 2%. Thus for the profiles we estimate a maximum 
positioning error of 0.1 cm or 10% of the radius. 

The flow was seeded by 0.5 pm polystyrene beads with a density of 1.05 g/cm3. Since 
the density was close to that of water, bead settling was not a problem and we were able 
to use the same working fluid for over a week. Furthermore, the beads gave sufficient 
backscattered light for almost every application. 

The signal was processed with a TSI IFA550 counter-type processor which includes 
adjustable low- and high-pass filters as well as an automatic noise rejection feature. To 
obtain frequency information about the flow it was necessary to take a time series of 
velocity data. The instantaneous velocity was polled at a well-defined rate using the 
time base of the Pc's internal clock. The average data rate at which the processor 
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FIGURE 4. Comparison of peak velocity measured with LDV (dashed line) to that of twice the average 
velocity Tdsol id  line). The average velocity is derived from the flow-rate calibration of the equation 
Q,, = za2 W,. The curvature of the solid line arises from the deviation of the profile from a pure 
parabola. 

gathered data varied from 50 to 500 Hz depending on density of seed particles, purity 
of the water, and depth of the beam crossing. The data rate at which the computer 
polled the processor was typically of the order of 1-5 Hz, significantly slower than the 
processor's data rate. In the event of low data rates, the data acquisition program 
automatically rejected the data. Random noise resulting from time-based errors was at 
least 40dB below the power of the primary forced frequency in the fast Fourier 
transform which suggests that our criteria for acceptable data was sufficient. Since the 
data could not be sampled from an analog source, analog filtering was unusable and 
some aliasing of 60 Hz noise was introduced. However, the aliased frequencies were 
easily identifiable in the FFT power spectrum, creating no problems of interpretation. 

In order to estimate the errors in the LDV measurements of velocity, tests were 
performed on steady flow in a straight pipe. We chose a point in the straight glass tube 
about 5 cm upstream from the entry to the curve. Here the velocity profile was 
measured at a Reynolds number of 300 and the peak velocity was measured for 
Reynolds numbers between 25 and 800. The profile shape at 300 was very nearly 
parabolic although the best fit through the data did not have zero velocity at the walls. 
Probably there was some remnant of a boundary layer at this Re,. We estimate 
however that the mean deviation of the profile velocities from those of a parabolic 
profile was less than 5 YO of the mean velocity. Consequently, the peak velocity should 
be nearly twice the average velocity as measured by flow rate experiments. A plot of 
velocity vs. Reynolds number is shown in figure 4. The dotted line represents twice the 
mean velocity from the flow rate calibration W, while the solid line is a best fit 
quadratic of the velocity in the centre of the tube measured with LDV. It can be seen 
that the LDV measurements agree to within 2% of the calibrated values for low 
Reynolds numbers while there is a growing discrepancy at higher Re,. This discrepancy 
is a real effect and not an error of measurement since the profile should deviate from 
parabolic as the boundary layer becomes more significant at higher Re,. As the profile 
diverges from a parabola, the peak velocity should become less than twice the mean 
velocity as seen in the graph. Consequently we estimate that our errors are less than 

4 FLM 256 
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2 YO in the centre of the tube where many of the time series measurements were made. 
Near the edges of the pipe, gradient broadening may become a more significant error 
as suggested by the profile at Re, = 300 where the best-fit parabola had non-zero 
velocity at the walls. However, since we are primarily interested in qualitative shape of 
the profiles, these errors do not invalidate the results. 

3. Experimental results 
3.1. Fully developed flow 

In order to compare our experiment with the numerical studies our flow must be fully 
developed. Since we were working with a curve of only 180" and a S of 1/7 it is not 
obvious that such a state is achievable. For steady flow with a flat entry profile Yao & 
Berger (1975) predict that for a Reynolds number of 400 the curve may need to extend 
up to 600" before the flow is fully developed. However, for steady flow with aparabolic 
entry profile, the estimate is reduced to around 165" (Austin, 1971). For our geometry, 
flow configuration, and entry conditions, no theoretical or experimental prediction is 
available. Thus we studied the profiles of the flow at various distances downstream 
from the entrance. 

Figure 5(af)  shows these axial velocity profiles, which were measured across the 
central horizontal diameter. The parameters for these runs were Re, = 325, a = 15, 
and y = 0.98. Each part of the figure represents a different phase of the pumped flow 
cycle. To obtain the data in this fashion we measured the velocity at equal time 
intervals six times per period for 50 periods. Then all the measurements at the 
beginning of each cycle were averaged to give us a single data point for figure 5(a). 
Similarly the second measurements of each cycle were averaged for a point for figure 
5(b), etc. Thus the corresponding points for figures 5(a-f) were gathered sim- 
ultaneously. The error bars on the data points represent the standard deviation of the 
mean of the 50 readings per point. It does not reflect the errors in positioning or 
parameter values. These averaged points and errors were then fit with a least-squares 
polynomial fit of degree 6 to clarify the form of the profile. The x-axis represents the 
distance from the inner bend in cm. The angle of curvature from the entry at which 
each profile was measured is labelled along the left of the figure and the normalized 
velocity is labelled along the right. (Unfortunately, we were unable to measure profiles 
at angles between 150" and 165" due to interference from the structural support of the 
laser and optics.) Each tic mark on the right represents one unit of normalized velocity 
with the normalization factor being W,. 

In fully developed flow the profile shape should be completely independent of the 
angle of curvature. One can see that at the earlier angles of curvature this is not the 
case. There are slow but pronounced changes in the profiles with respect to the angle 
of curvature at most of the phases, except perhaps at in and in when the flow is fastest. 
With this slowness of development it is difficult to tell if the flow near the outlet has 
reached its final state. However, since there is little change in the profile shapes for the 
top three curves, it is possible if not probable that the flow is fully developed after 165". 

In order to substantiate this conclusion we have compared our data at 170" with the 
numerical solution of Hamakiotes & Berger (1990). We used their fully developed data 
which was calculated at Re, = 375, a = 15, and y = 0.98. At this point in parameter 
space they found period tripling, and thus the flow should repeat itself after not one 
but three full periods of oscillation. Figure 6 shows a comparison of our experimental 
data to their data in the first period of oscillation. The curves are least-squares 
polynomial fits of data gathered by interpolation of their plots. Our data were taken 
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FIGURE 5(a,b). For caption see p. 77. 

directly from the second profile down (170') of figures 5 ( u - -  and overlaid on the 
numerical curves. One can see that there is reasonable agreement at most phases and 
positions. Figure 7 is identical to figure 6 except that the curves are taken from the 
second period of the calculations. One can see that the differences in the calculated 
axial profile from one period to the next are negligible at some phases and positions. 
At others, there were substantial changes, and many of the discrepancies between our 
data and their calculations were reduced or eliminated; at still others the agreement 
became worse in figure 7 than in figure 6 .  The region of the discrepancy is consistently 
between 1 and 1.5 cm from the inner bend which is where the greatest changes occur 
in the calculated profiles from one period to the next. For other regions, where the 
profiles are independent of period, good agreement between experiment and 
calculations is found. Thus it seems that the experimental axial flow qualitatively 
resembles the calculated axial flow but does not give us pertinent information on 
whether or not the flow is fully developed. 

With respect to the secondary flow, we cannot be certain that the axial flow is sensitive 
enough to show continuing development of the secondary flow. However, in 
Hamakiotes & Berger's calculations the axial flow was fairly sensitive to the changes 
in the secondary flow from one period to the next. In fact, the period tripling in the 

4-2 
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secondary flow has created the differences mentioned earlier between the curves in 
figures 6 and 7. Furthermore, while the axial flow as a whole may be relatively 
insensitive to secondary flow development it seems likely that at least some of the phases 
and positions in figure 5 should reveal such development. The uniformity of the top 
three profiles in each part of figure 5 suggests to us that both secondary and axial flow 
are fully developed. Consequently, we believe that the flow is fully developed within 
our curve and that the angle at which it becomes so is around 165". 

There remains the possibility that at positions near 180", beyond which the 
downstream condition is a straight tube rather than a curved tube, the flow could be 
modified. Since there is flow reversal near the inner wall of the curved tube, some of 
the returning fluid may have entered the straight section, and thus the flow at such a 
position is not the theoretical flow envisioned by Hamakiotes & Berger (1990). We 
have performed an additional experiment to examine this possibility, described in $4 
below. 

3.2. Triply periodicJEow 
We utilized a fast Fourier transform algorithm applied to a time series of velocities 
measured with LDV to search for a subharmonic bifurcation. Although this technique 
does not give detailed information about the velocity in an entire cross-section, it is far 
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FIGURE 5. Profiles of velocity at various angles of curvature around the bend and at different phases 
of the flow cycle. Each profile is measured along the horizontal diameter (see figure 3) with the inner 
bend corresponding to 0 cm. The dimensionless velocity scale u,fK is denoted along the right of each 
plot. The dotted lines represent the zero velocity base lines for each angle of curvature. (a) ot = kn, 
(b) in, (c) Zn, ( d )  in, (e) $n, (f) +n. 

less ambiguous and more sensitive when examining frequencies in the flow. Since 3T- 
periodicity should exist globally in fully developed flow, we arbitrarily chose a beam 
crossing point in the centre of the tube, half a radius below the top. The angular 
distance downstream was 170". We aligned the plane of the beams perpendicular to the 
axial flow to examine the circumferential flow. We chose to measure the circumferential 
flow as it more readily reveals flow pattern details without being overwhelmed by the 
forcing frequency. 

The three parameters Re,, a, and y could be controlled from the keyboard, so we 
were able to make an extensive search of parameter space semi-automatically. A 
graphical representation of our search is given in figure 8. Note that both the 
experimental and numerical data presented are for y = 0.98. Since the numerical study 
was limited to this value we also limited our search to a single y. In figure 8 one can see 
that the experimental data in open triangles covers the region of proposed period 
tripling marked with closed squares. We were motivated to implement a dense search 
along the a-axis because period tripling was found only at a = 15 and not at a = 10 
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FIGURE 6 .  Comparison of experimental velocity profile data with numerical curves of Hamakiotes & 
Berger (1990). The data points are experimental and the curves are numerical. Each profile represents 
a different phase of the flow cycle at 170' around the curve. The curves were generated from graphical 
contour plots of the velocity of the first period of oscillation of the period-tripling solution in 
Hamakiotes & Berger's paper. The contours were interpolated at 9 points along the central diameter 
and fit with a least-squares polynomial routine. 

or a = 20. Consequently, it was conceivable that there was a very narrow a-window 
that we might have missed owing to small errors in our measured value of a. We 
searched more broadly along the Reynolds-number axis because of the wide range of 
Reynolds numbers where period tripling was found numerically. Nevertheless, neither 
the dense search along the a-axis nor the broad search along the Re,-axis revealed any 
signs of a 3T-periodic flow. The distinctive sign of a 3 T-periodic solution that we were 
looking for was a frequency at one third the forcing frequency in the transformed 
power spectrum. Since the noise was low we expected that period tripling would show 
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FIGURE 7. As figure 6 except that the curves are from the contour plots of the 
second period of oscillation of the period-tripling solution. 

up as a fairly robust peak, but no statistically significant peaks were ever found at one 
third. A representative example of the power spectra is shown in figure 9. This 
spectrum was taken at Re, = 350, a = 15, and y = 0.98. The primary forcing 
frequency dominates the spectra at almost 50 dB above the noise floor. The strength 
of this signal over the noise indicated the sensitivity of the measurement. Smaller peaks 
equally distributed about the primary frequency are aliases of 60 Hz noise and other 
combinations of 60 Hz and the forcing frequency. These small peaks were present in 
most all of the spectra, but were always easily identifiable. 
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FIGURE 9. A typical power spectrum of a velocity time series. Parameter values for this spectrum were 
Re, = 375, a = 15, and y = 0.98. The strong peak signifies the frequency of forcing, f = 0.344. The 
arrow points to a frequency of 9 where a peak would exist if period tripling were found. 

4. Further experiments with a spiral tube 
Despite significant efforts to determine if the flow in the 180" curve was fully 

developed, firm conclusions could not be drawn. Thus a further study of the flow was 
undertaken. A second apparatus was constructed from Tygon tubing wrapped six 
times around a central post as shown in figure 10. The dimensions of the tubing closely 
matched the dimensions of the previous experiment so that the 180" curve could be 
easily replaced by the wrapped tube system. Consequently the various flow parameters 
were determined and controlled precisely as before. The tube's inner diameter was 
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0.75 in.; the outer diameter was 1.00 in.; and the diameter of post was 4 in. Thus the 
ratio of tube radius to radius of curvature was kept at 1/7 as required. While wrapping 
the tubing, care was taken to maintain as close to a circular cross-section as possible. 
However, some stretching was inevitable. Measurements of the cross-section revealed 
that the tube took on a slightly elliptical shape with minor and major axes of 1.96 cm 
and 1.63 cm respectively. 

Data were taken at 4x, 6x and 8x radians downstream from the inlet. These 
intermediate angles allowed the flow sufficient time to become fully developed and at 
the same time kept the flow adequately buffered from downstream effects. Since the 
flow was assumed to be fully developed, no velocity profiles were needed and a simpler 
flow visualization technique could be employed. The flow was seeded with Kalliroscope 
reflecting platelets which aligned themselves with the shear of the flow (Matisse & 
Gorman 1984). The reflectance of the fluid was measured at a point by reflecting a 
1 mW H e N e  laser beam from the fluid into a photo detector. The measured 
reflectance was very sensitive to patterns in the flow. 

A time series was taken and analysed with an FFT as was done previously. One such 
time series is shown in figure 11. The strong peaks correspond to the frequency of 
forcing and its higher harmonics. No peak was found at one-third of the forcing 
frequency, which would indicate period tripling. It is to be noted that the signal-to- 
noise ratio of the forcing frequency was 40 dB above the noise, indicating that this flow 
visualization technique was as sensitive as the LDV. As before, a broad search of the 
parameter space was carried out which included, but was not restricted to, Re, from 
250-450 in steps of 25, y from 0.9-1.0 in steps of 0.02, and a from 14.5-15.5 in steps 
of 0.25. These parameters were searched at 4n, 671 and 8x radians downstream from the 
inlet yielding a null result in every measurement. 

By measuring the secondary velocity vectors at specific points in the figures of 
Hamakiotes & Berger (1990), we were able to get an order of magnitude estimate of 
how large the peak in the power spectrum at one third the forcing frequency might be 
in comparison to the driving frequency peak. The height of the peak in the power 
spectrum at the forcing frequency is associated with the change in the velocity field 
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FIGURE 11. Fast Fourier transform of reflectance voltage using 1024 data points. Parameter values 
for this spectrum were Re,,, = 350, a = 15.0, y = 0.98. The strong peak signifies the frequency of 
forcing,f= 0.322. 

from phase to phase in the same cycle and the height of the expected peak at one third 
the forcing frequency is associated with the change in the field at the same phase but 
at the three different cycles. The difference between these two measurements was of the 
same order of magnitude, which implies that the height of the peak in the power 
spectrum where period tripling is expected (see figure 11) would be comparable to the 
height of the driving frequency peak. Thus the expected peak at one third the forcing 
frequency is not obscured by the background signal. 

We conclude that if period tripling exists it is apparently destroyed by either an 
elliptical perturbation in the cross-section of the curve or by a small pitch. 

5. Conclusions 
We have studied the development of the flow in a 180" curved pipe subject to a 

sinusoidal flow rate, and the frequency characteristics of the flow in the final 15". 
Profiles of the axial flow at various angles of curvature around the bend have been 
measured for different phases of the flow cycle. These profiles indicate that the entry 
length for fully developed flow may be around 165" for 8 = 1/7. Beyond this point the 
profiles are nearly identical and show little if any development. Furthermore we have 
compared the profiles in this region of the bend to the numerical work of Hamakiotes 
& Berger (1990) and found some agreement within specific regions in support of the 
conclusion of fully developed flow. 

However, in the frequency domain we found no evidence for the predicted period 
tripling. We suggest some possible reasons for this failure. First, it is possible that in 
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the 180' curve the flow is not fully developed and the axial profiles are insensitive to 
further development of secondary flow. Yet, our additional experiment certainly 
achieves full development of the flow and still no period tripling is found. This 
additional experiment, however, may be criticized for imperfectly matching the 
geometry used in the computer calculations. Secondly, it is unlikely that the solution 
of an unsteady calculation would be unstable, especially since the calculated solution 
was so robust. However, it is possible that the numerical solution using the assumption 
of fully developed flow could differ from a solution arrived at in a four-dimensional 
calculation of developing flow. This type of convectively unstable solution could be 
examined by further numerical study. Thirdly, for multiple parameter systems, stability 
theory states that only an extremely narrow window of parameter space exists in which 
a period-three solution would be expected. It is possible that the window in y-space or 
a-space is so narrow that our search did not uncover it. Since a similarly narrow 
window should exist for the numerical solution, this hypothesis could be tested if 
further calculations explored values of a and y very close to 15 and 0.98. Finally, it is 
possible that the period-tripling state is not unique, and one must vary the parameters 
according to a specific protocol to obtain the desired state. However, considering the 
robustness of the numerical solution to various choices of temporal and spatial 
discretization, we feel this to be unlikely. Note that the large dimensionality of 
parameter space makes an uninformed experimental search for a proper protocol 
impractical. 

We are much indebted to Stanley Berger for his constant encouragement in making 
these measurements and for many useful discussions. We are grateful to the late Don 
Nickles for his assistance in design and construction of the apparatus. This work was 
completed with the support of the National Science Foundation Condensed Matter 
Physics Program under Grant DMR-9 1- 18924. 
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